

STFU13N80K5

N-channel 800 V, 0.37 Ω typ., 12 A MDmesh™ K5 Power MOSFET in a TO-220FP ultra narrow leads package

Datasheet - production data

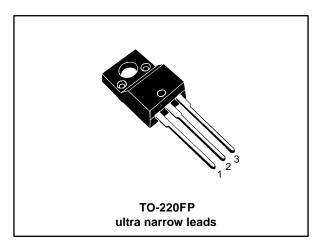
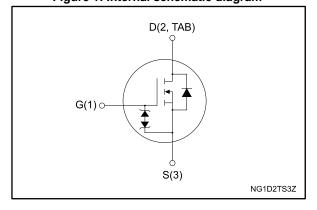



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D	P _{TOT}
STFU13N80K5	800 V	0.45 Ω	12 A	35 W

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STFU13N80K5	13N80K5	TO-220FP ultra narrow leads	Tube

Contents STFU13N80K5

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuit	9
4	Packag	e information	10
	4.1	TO-220FP ultra narrow leads package information	10
5	Revisio	n history	12

STFU13N80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter		Unit
V_{GS}	Gate source voltage	±30	V
I_D	Drain current (continuous) at T _C = 25 °C	12 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	7.6 ⁽¹⁾	Α
$I_{DM}^{(2)}$	Drain current (pulsed)	48 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C		W
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T _{jmax})		А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	148	mJ
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)		V
dv/dt (3)	Peak diode recovery voltage slope		V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	-55 to	°C
Tj	Operating junction temperature	150	C

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-case}	Thermal resistance junction-case max	3.57	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	

⁽¹⁾Limited by package.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \le$ 12 A, di/dt \le 100 A/ μ s, $V_{Peak} \le V_{(BR)DSS}$.

 $^{^{(4)}}V_{SD} \le 640 \text{ V}.$

Electrical characteristics STFU13N80K5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			<
	Zero gate voltage drain current (V _{GS} = 0)	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
I _{DSS}		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V},$ $T_{C} = 125 \text{ °C}$			50	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	4	5	٧
R _{DS(on)} Static drain-source on-resistance		V _{GS} = 10 V, I _D = 6 A		0.37	0.45	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		ı	870	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	ı	50	-	pF
C_{rss}	Reverse transfer capacitance	VG3 - V V	ı	2	-	pF
$C_{o(tr)}^{(1)}$	Equivalent output capacitance		ı	110	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ to 640 V}$		43		pF
R_{G}	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	ı	5	-	Ω
Q_g	Total gate charge		-	29	-	nC
Q_gs	Gate-source charge	$V_{DD} = 640 \text{ V}, I_D = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	7	-	nC
Q_{gd}	Gate-drain charge	VG3 - 10 V	ı	18	-	nC

Notes:

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	16	-	ns
t _r	Rise time	$V_{DD} = 400 \text{ V}, I_{D} = 6 \text{ A}, R_{G} = 4.7 \Omega,$ $V_{GS} = 10 \text{ V}$	-	16	-	ns
t _{d(off)}	Turn-off delay time		1	42	1	ns
t _f	Fall time		-	16	-	ns

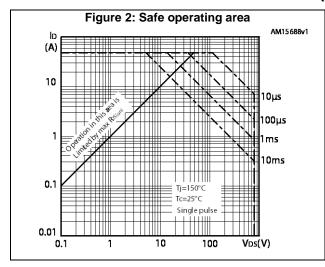
 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		14	Α
I _{SDM}	Source-drain current (pulsed)		-		56	Α
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0 V	1		1.5	V
t _{rr}	Reverse recovery time		ı	406		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$ $V_{DD} = 60 \text{ V}$	ı	5.7		μC
I _{RRM}	Reverse recovery current		ı	28		Α
t _{rr}	Reverse recovery time		-	600		ns
Qrr	Reverse recovery charge	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$ $V_{DD} = 60 \text{ V, T}_j = 150 \text{ °C}$		7.9		μC
I _{RRM}	Reverse recovery current		-	26		Α

Notes:


Table 8: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{mA}, I_{D} = 0 \text{ V}$	30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulsed: pulse duration = 300μs, duty cycle 1.5%.

2.2 Electrical characteristics (curves)

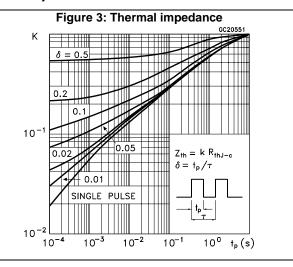
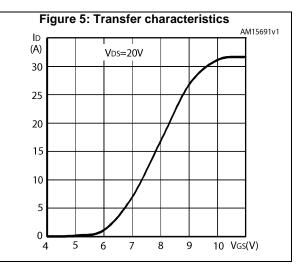
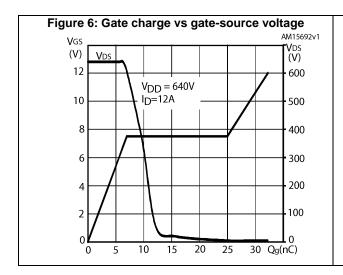
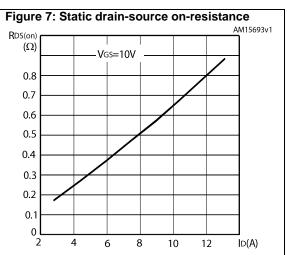
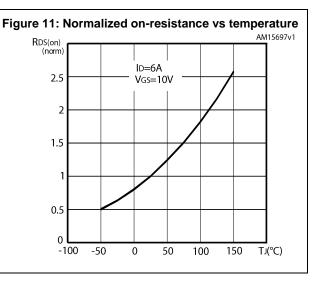
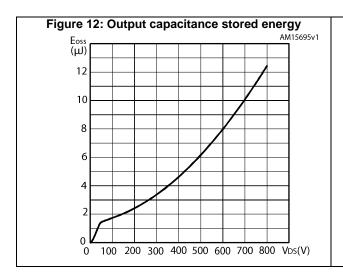





Figure 4: Output characteristics AM15690v1 ID (A) VGS=11V = 10V 30 9V 25 20 8V 15 10 7V 5 6V 0 15 V_{DS}(V)





STFU13N80K5 Electrical characteristics

Figure 9: Source-drain diode forward characteristics AM15698v1 (V) TJ=-50°C 0.9 0.8 TJ=25°C 0.7 TJ=150°C 0.6 0.5 2 4 6 8 10 ISD(A)

Figure 10: Normalized gate threshold voltage vs temperature AM15696v1 VGS(th) (norm ID=100μA 1.2 0.8 0.6 0.4 0.2 -100 -50 50 100 150 TJ(°C)

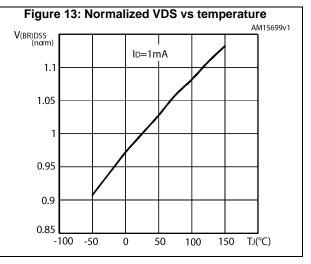
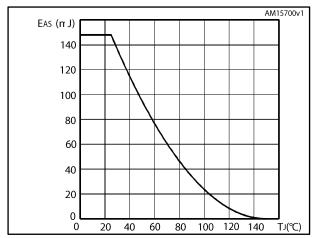
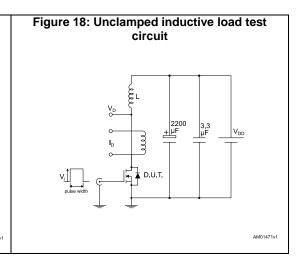
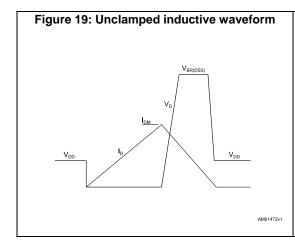



Figure 14: Maximum avalanche energy vs temperature


STFU13N80K5 Test circuit


3 Test circuit

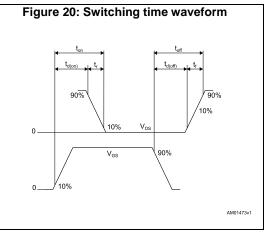

Figure 15: Test circuit for resistive load switching times

Figure 16: Test circuit for gate charge behavior

12 V 47 kΩ 100 nF 100

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP ultra narrow leads package information

В ω F1(x3)D G1 Ε 8576148_

Figure 21: TO-220FP ultra narrow leads package outline

Table 9: TO-220FP ultra narrow leads mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
В	2.50		2.70
D	2.50		2.75
Е	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

Revision history STFU13N80K5

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
08-Oct-2015	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

